Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3941284.v1

ABSTRACT

Background Over the past decade, numerous studies on potential factors contributing to ventilation-induced lung injury have been carried out. Mechanical power has been pointed out as the parameter that encloses all ventilation-induced lung injury-contributing factors. However, studies conducted to date provide data regarding mechanical power during the early hours of mechanical ventilation that may not correspond to the real scenario. Methods Retrospective observational study conducted at a single center in Spain. Patients admitted to the intensive care unit, > o = 18 years of age, and ventilated for over 24 hours were included. We extracted the mechanical power values throughtout the entire mechanical ventilation period from the clinical information system every two minutes. First, we calculate the cutoff-point for mechanical power beyond which there was a greater change in the probability of death. After, the sum of time values above the safe cut-off point was calculated to obtain the value in hours. We analyzed if the number of hours the patient was under ventilation with a mechanical power above the safe threshold was associated with mortality, invasive mechanical ventilation days, and intensive care unit length of stay. We repeated the analysis in different subgroups based on the degree of hypoxemia and in patients with SARS CoV-2 pneumonia. Results The cut-off point of mechanical power at with there is a higher increase in mortality was 18J/min. The greater the number or hours patients were under mechanical power > 18 J/min the higher the mortality in all the study population, in patients with SARS CoV-2 pneumonia and in mild to moderate hyopoxemic respiratory failure. The risk of death inceases 0.1% for each our with mechanical power exceeding 18 J/min. The number of hours with mechanical power > 18 J/min also affected the days of invasive mechanical ventilation and intensive care unit length of stay. Conclusions Continuous monitoring of mechanical power using an automated clinical information system shows that the number of hours with mechanical power > 18 J/min increases mortality in critically ill patients.


Subject(s)
Lung Diseases , Severe Acute Respiratory Syndrome , Critical Illness , Hypoxia , Respiratory Insufficiency
2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2598565.v1

ABSTRACT

Background: During the first wave of the COVID-19 pandemic, different clinical phenotypes were published. However, none of them have been validated in subsequent waves, so their current validity is unknown. The aim of the study is to validate the unsupervised cluster model developed during the first pandemic wave in a cohort of critically ill patients from the second and third pandemic waves. Methods: Retrospective, multicentre, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 74 Intensive Care Units (ICU) in Spain. To validate our original phenotypes model, we assigned a phenotype to each patient of the validation cohort using the same medoids, the same number of clusters (n= 3), the same number of variables (n= 25) and the same discretisation used in the development cohort. The performance of the classification was determined by Silhouette analysis and general linear modelling. The prognostic models were validated, and their performance was measured using accuracy test and area under curve (AUC)ROC. Results: The database included a total of 2,033 patients (mean age 63[53-92] years, 1643(70.5%) male, median APACHE II score (12[9-16]) and SOFA score (4[3-6]) points. The ICU mortality rate was 27.2%. Although the application of unsupervised cluster analysis classified patients in the validation population into 3 clinical phenotypes. Phenotype A (n=1,206 patients, 59.3%), phenotype B (n=618 patients, 30.4%) and phenotype C (n=506 patients, 24.3%), the characteristics of patients within each phenotype were significantly different from the original population. Furthermore, the silhouette coefficients were close to or below zero and the inclusion of phenotype classification in a regression model did not improve the model performance (accuracy =0.78, AUC=0.78) with respect to a standard model (accuracy = 0.79, AUC=0.79) or even worsened when the model was applied to patients within each phenotype (accuracy = 0.80, AUC 0.77 for Phenotype A, accuracy=0.73, AUC= 0.67 for phenotype B and accuracy= 0.66 , AUC= 0.76 for phenotype C ) Conclusion:  Models developed using machine learning techniques during the first pandemic wave cannot be applied with adequate performance to patients admitted in subsequent waves without prior validation. Trial Registration: The study was retrospectively registered (NCT 04948242) on June 30, 2021


Subject(s)
COVID-19 , Critical Illness , Respiratory Insufficiency
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1701193.v3

ABSTRACT

BackgroundOptimal time to intubate patients with SARS-CoV-2 pneumonia is controversial. Whereas some authors recommend trying noninvasive respiratory support before intubate, others argue that delaying intubation can cause patient-self-induced lung injury and worsen the prognosis. We hypothesized that delayed intubation would increase the risk mortality in COVID-19 patients.MethodsThis preplanned retrospective observational study used prospectively collected data from adult patients with COVID-19 and respiratory failure admitted to 73 intensive care units between February 2020 and March 2021. Patients with limitations on life support and those with missing data were excluded.We collected demographic, laboratory, clinical variables and outcomes.Intubation was classified as 1) Very early: before or at ICU admission; 2) Early: < 24 hours after ICU admission; or 3) Late: ≥24 hours after ICU admission. We compared the early group versus those intubated late, using chi-square tests for categorical variables and the Mann-Whitney U for continuous variables. To assess the relationship between early versus late intubation and mortality, we used multivariable binary logistic regression. Statistical significance was set at p<0.05.Results We included 4198 patients [median age, 63 (54‒71) years; 70.8% male; median SOFA score, 4 (3‒7); median APACHE score, 13 (10‒18)], and median PaO2/FiO2, 131 (100‒190)]; intubation was very early in 2024 (48.2%) patients, early in 928 (22.1%), and late in 441 (10.5%). ICU mortality was 30.2% and median ICU stay was 14 (7‒28) days. Although patients in the late group were younger [62 vs. 64, respectively, p<0.05] and had less severe disease [APACHE II (13 vs. 14, respectively, p<0.05) and SOFA (3 vs. 4, respectively, p<0.05) scores], and higher PaO2/FiO2 at admission (116 vs. 100, respectively, p<0.05), mortality was higher in the late group than in the early group (36.9% vs. 31.6%, p<0.05). Late intubation was independently associated with mortality (OR1.83; 95%CI 1.35‒2.47).ConclusionsDelaying intubation beyond the first 24 hours of admission in patients with COVID-19 pneumonia increases the risk of mortality. Trial registration: The study was retrospectively registered at Clinical-Trials.gov (NCT 04948242) on the 30th June 2021.


Subject(s)
COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1316286.v1

ABSTRACT

Background: The COVID-19 pandemic has challenged ICUs all over the world and their capacity was often exceeded. Our aim is to measure the impact of the pandemic at different levels in Spanish ICUs.Methods: On-line survey, conducted in April 2021, among members of the Sociedad Española de Medicina Intensiva, Crítica y Unidades Coronarias.Results: We received 246 answers from 157 hospitals. 67.7% of the ICUs were expanded during the pandemic, with an overall increase in beds of 58.6%. The ICU medical staff increased by 6.1% and there has been a nursing shortage in 93.7% of units. In 88% of the hospitals the collaboration of other specialists was necessary to manage the patient overload, which exceeded 200% of the pre-pandemic ICU capacity. The predominant collaboration model consisted of the intensive care medicine specialist being responsible for triage and coordinating the care of critically ill patients with COVID-19. Despite that 53.2% centres offered training for critically ill patient care, a deterioration in the quality of care was perceived. 84.2% hospitals drew up a Contingency Plan and in 77.8% of the hospitals a multidisciplinary committee was set up to agree on decision-making. Self-evaluation of the work performed was outstanding and 91.9% felt proud of what they had achieved. 16.7%, however, regretted becoming intensivist and up to 15% considered leaving their job. 61.8%, 79.3% and 89.4% of the participants have the feeling that the opinion about the ICU has improved for hospital management, for other specialists and for the general population (respectively). In 75.3% of the hospitals, at least one member of the ICU medical team has been infected with COVID-19.Conclusions: The Spanish ICUs assumed an unprecedented increase in the number of patients. They achieved it without hardly increasing their staff and, while intensive care medicine training was carried out for other specialists who collaborated. Despite the overload, the degree of job satisfaction was consistent with pre-pandemic levels.


Subject(s)
COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-125422.v2

ABSTRACT

Background: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. Methods: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 Intensive Care Units(ICU) in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient’s factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. Results: : The database included a total of 2,022 patients (mean age 64[IQR5-71] years, 1423(70.4%) male, median APACHE II score (13[IQR10-17]) and SOFA score (5[IQR3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A(mild) phenotype (537;26.7%) included older age (<65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623,30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C(severe) phenotype was the most common (857;42.5%) and was characterized by the interplay of older age (>65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. Conclusion: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice .


Subject(s)
COVID-19 , Respiratory Insufficiency
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3731426

ABSTRACT

Background: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. The objective was to analyze patient’s factors associated with mortality risk and utilize a Machine Learning(ML) to derive clinical COVID-19 phenotypes.Methods: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 Intensive Care Units(ICU) in Spain. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. An unsupervised clustering analysis was applied to determine presence of phenotypes. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves.Findings: The database included a total of 2,022 patients (mean age 64[IQR5-71] years, 1423(70·4%) male, median APACHE II score (13[IQR10-17]) and SOFA score (5[IQR3-7]) points. The ICU mortality rate was 32·6%. Of the 3 derived phenotypes, the C(severe) phenotype was the most common (857;42·5%) and was characterized by the interplay of older age (>65 years), high severity of illness and a higher likelihood of development shock. The A(mild) phenotype (537;26·7%) included older age (>65 years), fewer abnormal laboratory values and less development of complications and B (moderate) phenotype (623,30·8%) had similar characteristics of A phenotype but were more likely to present shock. Crude ICU mortality was 45·4%, 25·0% and 20·3% for the C, B and A phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications.Interpretation: The presented ML model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a “one-size-fits-all” model in practice.Funding Statement: This study was supported by the Spanish Intensive Care Society(SEMICYUC) and Ricardo Barri Casanovas Foundation.Declaration of Interests: All authors declare that they have no conflicts of interest.Ethics Approval Statement: The study was approved by the reference institutional review board at Joan XXIII University Hospital (IRB# CEIM/066/2020) and each participating site with a waiver of informed consent. All data values were anonymized prior to the phenotyping which consisted of clustering clinical variables on their association with COVID-19 mortality.


Subject(s)
COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL